package models import ( "crypto/aes" "crypto/cipher" "crypto/rand" "encoding/hex" "fmt" "io" "os" ) type Secret struct { SecretId int `db:"SecretId"` RoleId int `db:"RoleId"` DeviceName string `db:"DeviceName"` DeviceCategory string `db:"DeviceCategory"` UserName string `db:"UserName"` Secret string `db:"Secret"` } func (s *Secret) SaveSecret() (*Secret, error) { var err error fmt.Printf("SaveSecret storing values '%v'\n", s) result, err := db.NamedExec((`INSERT INTO secrets (RoleId, DeviceName, DeviceCategory, UserName, Secret) VALUES (:RoleId, :DeviceName, :DeviceCategory, :UserName, :Secret)`), s) if err != nil { fmt.Printf("StoreSecret error executing sql record : '%s'\n", err) return &Secret{}, err } else { affected, _ := result.RowsAffected() id, _ := result.LastInsertId() fmt.Printf("StoreSecret insert returned result id '%d' affecting %d row(s).\n", id, affected) } return s, nil } func (s *Secret) EncryptSecret() (*Secret, error) { keyString := os.Getenv("SECRETS_KEY") // The key argument should be the AES key, either 16 or 32 bytes // to select AES-128 or AES-256. key := []byte(keyString) //key := []byte("ECB518652A170880555136EA1F9752D6") plaintext := []byte(s.Secret) fmt.Printf("EncryptSecret applying key '%v' of length '%d' to plaintext secret '%s'\n", key, len(key), s.Secret) block, err := aes.NewCipher(key) if err != nil { fmt.Printf("EncryptSecret NewCipher error '%s'\n", err) return s, err } // Never use more than 2^32 random nonces with a given key because of the risk of a repeat. nonce := make([]byte, 12) if _, err := io.ReadFull(rand.Reader, nonce); err != nil { fmt.Printf("EncryptSecret nonce generation error '%s'\n", err) return s, err } fmt.Printf("EncryptSecret random nonce value is '%x'\n", nonce) aesgcm, err := cipher.NewGCM(block) if err != nil { fmt.Printf("EncryptSecret NewGCM error '%s'\n", err) return s, err } ciphertext := aesgcm.Seal(nil, nonce, plaintext, nil) fmt.Printf("EncryptSecret generated ciphertext '%x''\n", ciphertext) // Create a new slice to store nonce at the start and then the resulting ciphertext // Nonce is always 12 bytes combinedText := append(nonce, ciphertext...) fmt.Printf("EncryptSecret combined secret value is now '%x'\n", combinedText) // Store the value back into the struct ready for database operations s.Secret = hex.EncodeToString(combinedText) return s, nil //return string(ciphertext[:]), nil } func (s *Secret) DecryptSecret() (*Secret, error) { keyString := os.Getenv("SECRETS_KEY") key := []byte(keyString) // The key argument should be the AES key, either 16 or 32 bytes // to select AES-128 or AES-256. //key := []byte("ECB518652A170880555136EA1F9752D6") crypted, _ := hex.DecodeString(s.Secret) //nonce, _ := hex.DecodeString("64a9433eae7ccceee2fc0eda") // The nonce is the first 12 bytes from the ciphertext nonce := crypted[:12] ciphertext := crypted[12:] fmt.Printf("DecryptSecret applying key '%v' and nonce '%x' to ciphertext '%x'\n", key, nonce, ciphertext) block, err := aes.NewCipher(key) if err != nil { fmt.Printf("DecryptSecret NewCipher error '%s'\n", err) return s, err } aesgcm, err := cipher.NewGCM(block) if err != nil { fmt.Printf("DecryptSecret NewGCM error '%s'\n", err) return s, err } plaintext, err := aesgcm.Open(nil, nonce, ciphertext, nil) if err != nil { fmt.Printf("DecryptSecret Open error '%s'\n", err) return s, err } fmt.Printf("DecryptSecret plaintext is '%s'\n", plaintext) return s, nil }